Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices.

نویسندگان

  • Aviad Hai
  • Ada Dormann
  • Joseph Shappir
  • Shlomo Yitzchaik
  • Carmen Bartic
  • Gustaaf Borghs
  • J P M Langedijk
  • Micha E Spira
چکیده

Interfacing neurons with micro- and nano-electronic devices has been a subject of intense study over the last decade. One of the major problems in assembling efficient neuro-electronic hybrid systems is the weak electrical coupling between the components. This is mainly attributed to the fundamental property of living cells to form and maintain an extracellular cleft between the plasma membrane and any substrate to which they adhere. This cleft shunts the current generated by propagating action potentials and thus reduces the signal-to-noise ratio. Reducing the cleft thickness, and thereby increasing the seal resistance formed between the neurons and the sensing surface, is thus a challenge and could improve the electrical coupling coefficient. Using electron microscopic analysis and field potential recordings, we examined here the use of gold micro-structures that mimic dendritic spines in their shape and dimensions to improve the adhesion and electrical coupling between neurons and micro-electronic devices. We found that neurons cultured on a gold-spine matrix, functionalized by a cysteine-terminated peptide with a number of RGD repeats, readily engulf the spines, forming tight apposition. The recorded field potentials of cultured Aplysia neurons are significantly larger using gold-spine electrodes in comparison with flat electrodes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms.

Microelectrode arrays increasingly serve to extracellularly record in parallel electrical activity from many excitable cells without inflicting damage to the cells by insertion of microelectrodes. Nevertheless, apart from rare cases they suffer from a low signal to noise ratio. The limiting factor for effective electrical coupling is the low seal resistance formed between the plasma membrane an...

متن کامل

Simulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm

This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...

متن کامل

Equivalent Circuit Model for Square Ring Slot Frequency Selective Surface

An equivalent circuit model for predicting the frequency response of a square ring slot frequency selective surface (SRS-FSS) for normal incidence is described. The proposed FSS consists of an array of square patches centered within a wire grid. The presented circuit model is formed by the impedance of the wire grid that is parallel with the impedance of the patch array, also the mutual couplin...

متن کامل

Numerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles

Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...

متن کامل

Flexible Power Electronic Transformer for Power Flow Control Applications

This paper proposes a Flexible Power Electronic Transformer (FPET) for the application in the micro-grids. The low frequency transformer is usually used at the Point of Common Coupling (PCC) to connect the low voltage grid and utility network to each other. The conventional 50Hz transformer results in enhanced low voltage-grid power management system during grid-connected operation. In this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 6 41  شماره 

صفحات  -

تاریخ انتشار 2009